Non-destructive testing technology for corrosion wall thickness reduction defects in pipelines based on electromagnetic ultrasound

Pipeline transportation is the main means of transportation of oil, natural gas and other energy sources. During transportation, corrosive substances in oil and natural gas can cause damage to the pipeline structure. A non-destructive testing technology for pipeline corrosion based on electromagneti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in earth science (Lausanne) 2024-07, Vol.12
Hauptverfasser: Tian, Yifan, Palaev, Alexander Grigorievich, Shammazov, Ildar Ayratovich, Ren, Yiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pipeline transportation is the main means of transportation of oil, natural gas and other energy sources. During transportation, corrosive substances in oil and natural gas can cause damage to the pipeline structure. A non-destructive testing technology for pipeline corrosion based on electromagnetic ultrasound technology was proposed to improve the stability and safety of energy pipeline transportation systems. This technology utilized empirical mode decomposition and singular spectrum analysis to denoise electromagnetic ultrasound signals. The designed electromagnetic signal denoising algorithm completely removed mild noise pollution. When using this method to detect pipeline corrosion, the maximum calculation error of pipeline wall thickness was 0.1906 mm, and the lowest was 0.0015 mm. When detecting small area corrosion deficiency, the amplitude of the detection signal increased with the depth, up to a maximum of around 24 V, which accurately reflected small area defects. This non-destructive testing technology for pipelines can effectively detect the pipeline corrosion, which is helpful for the regular maintenance of pipeline energy transmission systems.
ISSN:2296-6463
2296-6463
DOI:10.3389/feart.2024.1432043