Design evaluation of microwave transmission properties of YBa2Cu3O7-based kinetic inductance detectors
We designed, fabricated, and characterized microwave transmission properties with rewound strip structures for YBa2Cu3O7 (YBCO)-based kinetic inductance detectors (KIDs). The superconducting rewound strip serves as a microwave resonator and as a broadband terahertz-wave antenna. To predict the micro...
Gespeichert in:
Veröffentlicht in: | Materials research express 2021-11, Vol.8 (11), p.116001 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We designed, fabricated, and characterized microwave transmission properties with rewound strip structures for YBa2Cu3O7 (YBCO)-based kinetic inductance detectors (KIDs). The superconducting rewound strip serves as a microwave resonator and as a broadband terahertz-wave antenna. To predict the microwave resonance characteristics before fabrication, the line-width (w) and space (s) dependence of the spiral resonators were analyzed using an electromagnetic simulator; the resonance frequency increased, and the quality factor decreased with increasing w and s from 10 to 40 μm. YBCO-based KID arrays with different w (10 and 40 μm) were fabricated on 10 mm-square MgO substrates, cooled to 3 K using a 4He refrigerator, and evaluated using a vector network analyzer to verify the result of the simulation experimentally. The measured resonance frequency ratio of 1.11 times (5.04 → 5.59 GHz) agreed with the simulated ones of 1.10 times (4.84 → 5.33 GHz) between w = 10 and 40 μm. The other resonance characteristics, such as transmission coefficient and quality factor, have a similar w dependence with the simulation. |
---|---|
ISSN: | 2053-1591 |
DOI: | 10.1088/2053-1591/ac3693 |