استفاده از شبکه عصبی مصنوعی به منظور مدلسازی فرایند بیولیچینگ فلزات با ارزش از خاکستر سوخت نفت کوره با استفاده از باکتری اسیدی تیوباسیلوس فرواکسیدانس

در این مطالعه مدلسازی بیولیچینگ فلزات باارزش وانادیوم، نیکل و مس موجود در خاکسترهای سوخت نفت‌کوره با استفاده شبکه‌های عصبی مصنوعی بررسی می‌شود. در مدل‌های به‌دست‌آمده، درصد استخراج فلزات به‌عنوان تابعی از فاکتورهای pH (در بازه 1- 5/2)، غلظت اولیه یون Fe2+ (در بازه 0- 9 گرم بر لیتر)، درصد تلقیح باکتر...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:نشریه مهندسی معدن 2020-08, Vol.15 (47), p.68-75
Hauptverfasser: سید امید رستگار, رضا بیگزاده
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:در این مطالعه مدلسازی بیولیچینگ فلزات باارزش وانادیوم، نیکل و مس موجود در خاکسترهای سوخت نفت‌کوره با استفاده شبکه‌های عصبی مصنوعی بررسی می‌شود. در مدل‌های به‌دست‌آمده، درصد استخراج فلزات به‌عنوان تابعی از فاکتورهای pH (در بازه 1- 5/2)، غلظت اولیه یون Fe2+ (در بازه 0- 9 گرم بر لیتر)، درصد تلقیح باکتری (در بازه 1- 10 %) و زمان (در بازه 0- 15 روز) فرایند مورد بررسی قرارگرفته است. سه مدل شبکه عصبی برای تخمین درصد استخراج هریک از فلزات ارائه شد. از روش پس انتشار خطا و الگوریتم لونبرگ-مارکورت برای آموزش شبکه استفاده شد. یک‌چهارم داده‌ها در فرایند آموزش شبکه عصبی استفاده نشد و برای ارزیابی مدل مورد استفاده قرار گرفت. متوسط خطای نسبی (MRE) برای وانادیوم، نیکل و مس به ترتیب برابر با % 35/5، % 07/3 و % 82/2 به دست آمد. همچنین مقدار بزرگ‌تر از 99/0 از کسر مطلق واریانس (R2) بیانگر تائید اعتبار مدل‌های به دست آمده از شبکه عصبی می‌باشد.
ISSN:1735-7616
2676-4482
DOI:10.22034/ijme.2020.114427.1752