No Chattering and Adaptive Sliding Mode Control of a Fractional-Order Phase Converter with Disturbances and Parameter Uncertainties

Discussing the dynamical properties of various power system models is of significant importance in order to understand its complete behavior. Even though there are many literatures discussing about the chaotic behavior shown by phase converter circuits, none of them have reported the hazardous pheno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2018-01, Vol.2018 (2018), p.1-13
Hauptverfasser: Duraisamy, Prakash, Karthikeyan, Anitha, Weldegiorgis, Riessom, Rajagopal, Karthikeyan, Tadesse, Goitom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Discussing the dynamical properties of various power system models is of significant importance in order to understand its complete behavior. Even though there are many literatures discussing about the chaotic behavior shown by phase converter circuits, none of them have reported the hazardous phenomenon of multistability. In this paper, we derive the fractional-order model of a phase converter circuit and investigate its dynamics. Bifurcation of the system with the parameters and fractional order are investigated. A forward and backward continuation scheme is adopted to display various coexisting attractors; the property of multistability is also discussed. Using forward and backward continuation, various coexisting attractors and the property of multistability are discussed. Two different sliding mode controllers for controlling chaotic oscillations with model disturbances and parameter uncertainties are derived, and the effectiveness of the controllers is discussed with numerical simulations.
ISSN:1076-2787
1099-0526
DOI:10.1155/2018/5873230