Low-redshift constraints on covariant canonical Gauge theory of gravity
Constraints on the Covariant Canonical Gauge Gravity (CCGG) theory from low-redshift cosmology are studied. The formulation extends Einstein’s theory of General Relativity (GR) by a quadratic Riemann–Cartan term in the Lagrangian, controlled by a “deformation” parameter. In the Friedman universe thi...
Gespeichert in:
Veröffentlicht in: | The European physical journal. C, Particles and fields Particles and fields, 2021-02, Vol.81 (2), p.1-9, Article 125 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Constraints on the Covariant Canonical Gauge Gravity (CCGG) theory from low-redshift cosmology are studied. The formulation extends Einstein’s theory of General Relativity (GR) by a quadratic Riemann–Cartan term in the Lagrangian, controlled by a “deformation” parameter. In the Friedman universe this leads to an additional geometrical stress energy and promotes, due to the necessary presence of torsion, the cosmological constant to a time-dependent function. The MCMC analysis of the combined data sets of Type Ia Supernovae, Cosmic Chronometers and Baryon Acoustic Oscillations yields a fit that is well comparable with the
Λ
CDM results. The modifications implied in the CCGG approach turn out to be subdominant in the low-redshift cosmology. However, a non-zero spatial curvature and deformation parameter are shown to be consistent with observations. |
---|---|
ISSN: | 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s10052-021-08924-0 |