FLOW PATTERN PREDICTION IN HORIZONTAL AND INCLINED PIPES USING TREE-BASED AUTOMATED MACHINE LEARNING
In the oil and gas industry, understanding two-phase (gas-liquid) flow is pivotal, as it directly influences equipment design, quality control, and operational efficiency. Flow pattern determination is thus fundamental to industrial engineering and management. This study utilizes the Tree-based Pipe...
Gespeichert in:
Veröffentlicht in: | Rudarsko-geološko-naftni zbornik 2024, Vol.39 (4), p.153-166 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the oil and gas industry, understanding two-phase (gas-liquid) flow is pivotal, as it directly influences equipment design, quality control, and operational efficiency. Flow pattern determination is thus fundamental to industrial engineering and management. This study utilizes the Tree-based Pipeline Optimization Tool (TPOT), an Automated Machine Learning (AutoML) framework that employs genetic programming, in obtaining the best machine learning model for a provided dataset. This paper presents the design of flow pattern prediction models using the TPOT. The TPOT was applied to predict flow patterns in 2.5 cm and 5.1 cm diameter pipes, using datasets from existing literature. The datasets went through handling of imbalanced data, standardization, and one-hot encoding as data preparation techniques before being fed into TPOT. The models designed for the 2.5 cm and 5.1 cm datasets were named as FPTL_TPOT_2.5 and FPTL_TPOT_5.1, respectively. A comparative analysis of these models alongside other standard supervised machine learning models and similar state-of-the-art similar two-phase flow prediction models was carried out and the insights on the performance of these TPOT designed models were discussed. The results demonstrated that models designed with TPOT achieve remarkable accuracy, scoring 97.66% and 98.09%, for the 2.5 cm and 5.1 cm datasets respectively. Furthermore, the FPTL_TPOT_2.5 and FPTL_TPOT_5.1 models outperformed other counterpart machine learning models in terms of performance, underscoring TPOT’s effectiveness in designing machine learning models for flow pattern prediction. The findings of this research carry significant implications for enhancing efficiency and optimizing industrial processes in the oil and gas sector. |
---|---|
ISSN: | 1849-0409 0353-4529 1849-0409 |
DOI: | 10.17794/rgn.2024.4.12 |