Optimization of Precious Metals Recovery from Electronic Waste by Chromobacterium violaceum Using Response Surface Methodology (RSM)

An effective recovery technology will be valuable in the future because the concentration of the precious metal contained in the source can be a key driver in recycling technology. This study aims to use response surface methodology (RSM) through Minitab software to discover the optimum oxygen level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinorganic chemistry and applications 2023-03, Vol.2023, p.4011670-12
Hauptverfasser: Abdol Jani, Wan Nur Fazlina, Suja’, Fatihah, Sayed Jamaludin, Sharifah Iziuna, Mohamad, Nor Fadilah, Abdul Rani, Noor Hidayu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An effective recovery technology will be valuable in the future because the concentration of the precious metal contained in the source can be a key driver in recycling technology. This study aims to use response surface methodology (RSM) through Minitab software to discover the optimum oxygen level (mgL−1), e-waste pulp density (% w/v), and glycine concentration (mgL−1) for the maximum recovery of gold (Au) and silver (Ag). The method of precious metals recovery used for this study was taken from the bioleaching using 2 L of batch stirred tank reactor (BSTR). A Box-Behnken of RSM experimental statistical designs was used to optimize the experimental procedure. The result of the RSM optimization showed that the highest recovery was achieved at an oxygen concentration of 0.56 mgL−1, a pulp density of 1.95%, and a glycine concentration of 2.49 mgL−1, which resulted in the recovery of 62.40% of Au. The pulp density and glycine concentration greatly impact how much Au is bioleached by C. violaceum. As a result, not all of the variables analyzed seem crucial for getting the best precious metals recovery, and some adjustments may be useful in the future.
ISSN:1565-3633
1687-479X
DOI:10.1155/2023/4011670