Trusted Smart Statistics: How new data will change official statistics
In this discussion paper, we outline the motivations and the main principles of the Trusted Smart Statistics (TSS) concept that is under development in the European Statistical System. TSS represents the evolution of official statistics in response to the challenges posed by the new datafied society...
Gespeichert in:
Veröffentlicht in: | Data & Policy 2020-01, Vol.2, Article e7 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this discussion paper, we outline the motivations and the main principles of the Trusted Smart Statistics (TSS) concept that is under development in the European Statistical System. TSS represents the evolution of official statistics in response to the challenges posed by the new datafied society. Taking stock from the availability of new digital data sources, new technologies, and new behaviors, statistical offices are called nowadays to rethink the way they operate in order to reassert their role in modern democratic society. The issue at stake is considerably broader and deeper than merely adapting existing processes to embrace so-called Big Data. In several aspects, such evolution entails a fundamental paradigm shift with respect to the legacy model of official statistics production based on traditional data sources, for example, in the relation between data and computation, between data collection and analysis, between methodological development and statistical production, and of course in the roles of the various stakeholders and their mutual relationships. Such complex evolution must be guided by a comprehensive system-level view based on clearly spelled design principles. In this paper, we aim at providing a general account of the TSS concept reflecting the current state of the discussion within the European Statistical System. |
---|---|
ISSN: | 2632-3249 2632-3249 |
DOI: | 10.1017/dap.2020.7 |