Asymmetric Effect of El Niño—Southern Oscillation on the Spring Precipitation over South China

South China is one of the most densely populated and agriculture-based regions in China. Local spring precipitation is crucial to the people’s livelihood and social economic development. Using the observed and reanalysis datasets for the period 1958–2019, this study revealed an asymmetric effect of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2021-03, Vol.12 (3), p.391
Hauptverfasser: Xu, Bei, Li, Gen, Gao, Chujie, Yan, Hong, Wang, Ziqian, Li, Yang, Zhu, Siguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:South China is one of the most densely populated and agriculture-based regions in China. Local spring precipitation is crucial to the people’s livelihood and social economic development. Using the observed and reanalysis datasets for the period 1958–2019, this study revealed an asymmetric effect of El Niño—Southern Oscillation (ENSO) on the following spring precipitation over South China. During the years with positive ENSO phases, a strong positive correlation between spring precipitation and the preceding winter ENSO sea surface temperature (SST) anomalies existed over Guangdong province. For the years with negative ENSO phases, such a strong positive correlation shifts westwards to Guangxi province. To be specific, the El Niño events usually result in a precipitation surplus in the decaying spring over Guangdong province, while the La Niña events usually lead to a precipitation deficit in the decaying spring over Guangxi province. This is attributed to the nonlinear effects of ENSO on the atmospheric circulation. Compared with El Niño, the abnormal center of La Niña evidently extends westwards, inducing a westward movement of the anomalous low-level atmospheric circulation, which eventually results in a westward-shifted effect on the following spring precipitation over South China. Our findings emphasize the nonlinear responses of spring precipitation over South China to ENSO. This has important implications for the seasonal climate predictions over South China.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos12030391