Centered Multi-Task Generative Adversarial Network for Small Object Detection

Despite the breakthroughs in accuracy and efficiency of object detection using deep neural networks, the performance of small object detection is far from satisfactory. Gaze estimation has developed significantly due to the development of visual sensors. Combining object detection with gaze estimati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-07, Vol.21 (15), p.5194
Hauptverfasser: Wang, Hongfeng, Wang, Jianzhong, Bai, Kemeng, Sun, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite the breakthroughs in accuracy and efficiency of object detection using deep neural networks, the performance of small object detection is far from satisfactory. Gaze estimation has developed significantly due to the development of visual sensors. Combining object detection with gaze estimation can significantly improve the performance of small object detection. This paper presents a centered multi-task generative adversarial network (CMTGAN), which combines small object detection and gaze estimation. To achieve this, we propose a generative adversarial network (GAN) capable of image super-resolution and two-stage small object detection. We exploit a generator in CMTGAN for image super-resolution and a discriminator for object detection. We introduce an artificial texture loss into the generator to retain the original feature of small objects. We also use a centered mask in the generator to make the network focus on the central part of images where small objects are more likely to appear in our method. We propose a discriminator with detection loss for two-stage small object detection, which can be adapted to other GANs for object detection. Compared with existing interpolation methods, the super-resolution images generated by CMTGAN are more explicit and contain more information. Experiments show that our method exhibits a better detection performance than mainstream methods.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21155194