Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities
In this article, we implemented the idea of a fuzzy interval-valued function with the well-known generalized fuzzy fractional operators, associated with different types of convexities and preinvexities. We developed the Prabhakar fuzzy fractional operators using the fuzzy interval-valued function. W...
Gespeichert in:
Veröffentlicht in: | AIMS Mathematics 2024-01, Vol.9 (7), p.17696-17715 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we implemented the idea of a fuzzy interval-valued function with the well-known generalized fuzzy fractional operators, associated with different types of convexities and preinvexities. We developed the Prabhakar fuzzy fractional operators using the fuzzy interval-valued function. We presented the novel extensions of Hermite-Hadamard fuzzy-type and trapezoidal fuzzy-type inequalities, based on the $ h $-Godunova-Levin convex and $ h $-Godunova preinvex fuzzy interval-valued functions. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2024860 |