Robust Geman-McClure Based Nonlinear Spline Adaptive Filter Against Impulsive Noise

This paper first proposes nonlinear spline adaptive filter based on the robust Geman-McClure estimator (SAF-RGM). The proposed algorithm is obtained by minimizing the cost function relied on the Geman-McClure estimator. Since the Geman-McClure estimator can remove outliers with large amplitude from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.22571-22580
Hauptverfasser: Liu, Qianqian, He, Yigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper first proposes nonlinear spline adaptive filter based on the robust Geman-McClure estimator (SAF-RGM). The proposed algorithm is obtained by minimizing the cost function relied on the Geman-McClure estimator. Since the Geman-McClure estimator can remove outliers with large amplitude from dataset, the proposed algorithm can obtain the excellent performance in the impulsive noise. Moreover, the mean and mean square behaviors of the SAF-RGM algorithm are analyzed. Simulations are conducted to confirm that the proposed SAF-RGM algorithm achieves better performance than the existing spline nonlinear adaptive filtering algorithms. Besides, simulation results validate the theoretical conclusions.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2969219