Electrolyte‐Wettability Issues and Challenges of Electrode Materials in Electrochemical Energy Storage, Energy Conversion, and Beyond
The electrolyte‐wettability of electrode materials in liquid electrolytes plays a crucial role in electrochemical energy storage, conversion systems, and beyond relied on interface electrochemical process. However, most electrode materials do not have satisfactory electrolyte‐wettability for possibl...
Gespeichert in:
Veröffentlicht in: | Advanced science 2023-06, Vol.10 (17), p.e2300283-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The electrolyte‐wettability of electrode materials in liquid electrolytes plays a crucial role in electrochemical energy storage, conversion systems, and beyond relied on interface electrochemical process. However, most electrode materials do not have satisfactory electrolyte‐wettability for possibly electrochemical reaction. In the last 30 years, there are a lot of literature have directed at exploiting methods to improve electrolyte‐wettability of electrodes, understanding basic electrolyte‐wettability mechanisms of electrode materials, exploring the effect of electrolyte‐wettability on its electrochemical energy storage, conversion, and beyond performance. This review systematically and comprehensively evaluates the effect of electrolyte‐wettability on electrochemical energy storage performance of the electrode materials used in supercapacitors, metal ion batteries, and metal‐based batteries, electrochemical energy conversion performance of the electrode materials used in fuel cells and electrochemical water splitting systems, as well as capacitive deionization performance of the electrode materials used in capacitive deionization systems. Finally, the challenges in approaches for improving electrolyte‐wettability of electrode materials, characterization techniques of electrolyte‐wettability, as well as electrolyte‐wettability of electrode materials applied in special environment and other electrochemical systems with electrodes and liquid electrolytes, which gives future possible directions for constructing interesting electrolyte‐wettability to meet the demand of high electrochemical performance, are also discussed.
The electrolyte‐wettability of electrode materials has remarkable impact on their electrochemical performance. This review elucidates the basic electrolyte‐wettability mechanisms of electrode materials, provides a comprehensive evaluation of the topic by summarizing recent progress in the research of electrolyte‐wettability of electrode in electrochemical energy storage systems, energy conversion systems, and capacitive deionization, and proposes critical issues, challenges, and perspectives. |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202300283 |