Batch-Fabricated α-Si Assisted Nanogap Tunneling Junctions

This paper details the design, fabrication, and characterization of highly uniform batch-fabricated sidewall etched vertical nanogap tunneling junctions for bio-sensing applications. The device consists of two vertically stacked gold electrodes separated by a partially etched sacrificial spacer laye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2019-05, Vol.9 (5), p.727
Hauptverfasser: Banerjee, Aishwaryadev, Khan, Shakir-Ul Haque, Broadbent, Samuel, Likhite, Rugved, Looper, Ryan, Kim, Hanseup, Mastrangelo, Carlos H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper details the design, fabrication, and characterization of highly uniform batch-fabricated sidewall etched vertical nanogap tunneling junctions for bio-sensing applications. The device consists of two vertically stacked gold electrodes separated by a partially etched sacrificial spacer layer of sputtered α-Si and Atomic Layer Deposited (ALD) SiO . A ~10 nm wide air-gap is formed along the sidewall by a controlled dry etch of the spacer. The thickness of the spacer layer can be tuned by adjusting the number of ALD cycles. The rigorous statistical characterization of the ultra-thin spacer films has also been performed. We fabricated nanogap electrodes under two design layouts with different overlap areas and spacer gaps, from ~4.0 nm to ~9.0 nm. Optical measurements reported an average non-uniformity of 0.46 nm (~8%) and 0.56 nm (~30%) in SiO and α-Si film thickness respectively. Direct tunneling and Fowler-Nordheim tunneling measurements were done and the barrier potential of the spacer stack was determined to be ~3.5 eV. I-V measurements showed a maximum resistance of 46 × 10 GΩ and the average dielectric breakdown field of the spacer stack was experimentally determined to be ~11 MV/cm.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano9050727