Chemically reactive magnetized flow of viscoplastic nanofluid through a vertical cone considering non-Darcy porous media

Recuperating heat transference effectiveness can be carried out effectively by escalating the thermal characteristics of working liquids. One realistic solution is the utilization of nanoliquids (liquids that comprise suspended nano-particles). These state-of-the-art liquids have the aptitude to fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering science and technology, an international journal an international journal, 2024-11, Vol.59, p.101853, Article 101853
Hauptverfasser: Zhao, Xiaofang, Nasir, Muhammad, Al-Dossari, Mawaheb, Ashiq, M., Salman Kausar, M., Waqas, M., Abdullaev, Sherzod
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recuperating heat transference effectiveness can be carried out effectively by escalating the thermal characteristics of working liquids. One realistic solution is the utilization of nanoliquids (liquids that comprise suspended nano-particles). These state-of-the-art liquids have the aptitude to function as a coolant (either as primary or emergency) in nuclear reactors, potentially enlarging overall thermal management. This investigation accounts cross diffusion impact in porous medium based chemically reacting viscoplastic nanoliquid confined by convectively heated magnetized impermeable rotating cone. Thermal transport characteristics are addressed by considering diffusion-thermo (Dufour), thermal generation, thermal-convective conditions and radiation. Concentration expression includes chemical reaction, thermal-diffusion (Soret) and solutal-convective conditions. The complicated nonlinear constitutive expressions, exhibited in their dimensional mathematical form are remodeled into highly nonlinear ODEs (ordinary differential expressions) by deploying apposite similarity variables. The dimensionless profiles are numerically computed utilizing bvp4c scheme and then elucidated arithmetically and graphically. Finally, it is scrutinized that nanoparticles concentration diminishes subject to escalating estimations of Lewis number, thermophoresis and chemical reaction variables while opposite characteristics are reported for increasing Brownian diffusive variables, solutal Biot and Soret numbers.
ISSN:2215-0986
2215-0986
DOI:10.1016/j.jestch.2024.101853