A Promising Technological Approach to Improve Indoor Air Quality
Indoor Air quality (IAQ) in private or public environments is progressively recognized as a critical issue for human health. For that purpose the poor IAQ needs to be mitigated and immediate drastic measures must be taken. In environmental science and especially in advanced oxidation processes and t...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2019-11, Vol.9 (22), p.4837 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Indoor Air quality (IAQ) in private or public environments is progressively recognized as a critical issue for human health. For that purpose the poor IAQ needs to be mitigated and immediate drastic measures must be taken. In environmental science and especially in advanced oxidation processes and technologies (AOPs-AOTs), photocatalysis has gained considerable interest among scientists as a tool for IAQ improvement. In the current study an innovative paint material was developed which exhibits intense photocatalytic activity under direct and diffused visible light for the degradation of air pollutants, suitable for indoor use. A laboratory and a real scale study were performed using the above innovative photo-paint. The lab test was performed in a special design photo-reactor while the real scale in a military’s medical building. Nitrogen Oxide (NO) and Toluene concentration was monitored between “reference” rooms (without photo paint) and “green” rooms (with photo-paint) in order to estimate the photocatalytic efficiency of the photo-paint to degrade the above pollutants. Results of the study showed a decrease up to 60% and 16% for NO and toluene respectively under lab scale tests while an improvement of air quality up to 19% and 5% under real world conditions was achieved. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9224837 |