Non-Conventional Thermodynamics and Models of Gradient Elasticity

We consider material bodies exhibiting a response function for free energy, which depends on both the strain and its gradient. Toupin-Mindlin’s gradient elasticity is characterized by Cauchy stress tensors, which are given by space-like Euler-Lagrange derivative of the free energy with respect to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2018-03, Vol.20 (3), p.179
Hauptverfasser: Alber, Hans-Dieter, Broese, Carsten, Tsakmakis, Charalampos, Beskos, Dimitri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider material bodies exhibiting a response function for free energy, which depends on both the strain and its gradient. Toupin-Mindlin’s gradient elasticity is characterized by Cauchy stress tensors, which are given by space-like Euler-Lagrange derivative of the free energy with respect to the strain. The present paper aims at developing a first version of gradient elasticity of non-Toupin-Mindlin’s type, i.e., a theory employing Cauchy stress tensors, which are not necessarily expressed as Euler-Lagrange derivatives. This is accomplished in the framework of non-conventional thermodynamics. A one-dimensional boundary value problem is solved in detail in order to illustrate the differences of the present theory with Toupin-Mindlin’s gradient elasticity theory.
ISSN:1099-4300
1099-4300
DOI:10.3390/e20030179