A pan-cancer analysis of molecular characteristics and oncogenic role of gasdermins
The gasdermins (GSDMs) family is proposed to be pore-forming effector proteins that cause cell membrane permeabilization and pyroptosis. Despite our increasing knowledge of GSDMD, GSDME and GSDMB, the biological functions and the regulation of GSDM expression and activation remain elusive for most G...
Gespeichert in:
Veröffentlicht in: | Cancer Cell International 2022-02, Vol.22 (1), p.80-80, Article 80 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The gasdermins (GSDMs) family is proposed to be pore-forming effector proteins that cause cell membrane permeabilization and pyroptosis. Despite our increasing knowledge of GSDMD, GSDME and GSDMB, the biological functions and the regulation of GSDM expression and activation remain elusive for most GSDMs. In this study, we analyzed the molecular characteristics and oncogenic role of GSDM family genes systematically.
TCGA, CCLE, cBioPortal, GEPIA, CellMiner and BioGRID databases were utilized in this study. Immunohistochemical analysis and a series of in vitro experiments were conducted.
We found that, in cancer, GSDM genes and their expressions extensively changed, which were associated with patient survival. The expression of GSDMs was widely associated with cancer-related pathways, drug resistance, immune subtypes, tumor microenvironment and cancer cell stemness. However, an intra- and inter-cancer heterogeneity was discovered regarding the corresponding GSDM gene. We found that GSDMA and GSDMB regulated drug resistance to the opposite direction of GSDME. In colorectal cancer, GSDME might be a positive regulator in cell invasion and metastasis through cell migration and angiogenesis, while GSDMA, GSDMB and GSDMD might be a negatively regulator of cell migration.
GSDM family genes might play important roles in cancer other than pyroptosis. We suggest more efforts be made to investigate the GSDM family and each GSDM gene be studied as an entity in each type of cancer. |
---|---|
ISSN: | 1475-2867 1475-2867 |
DOI: | 10.1186/s12935-022-02483-4 |