New fermions in the light of the (g − 2)μ
The very precise measurement of the anomalous magnetic moment of the muon, recently released by the Muon g-2 experiment at Fermilab, can serve to set stringent constraints on new particles. If the observed 4 σ discrepancy from the Standard Model value is indeed real, it will set a tight margin on th...
Gespeichert in:
Veröffentlicht in: | Frontiers in physics 2022-10, Vol.10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The very precise measurement of the anomalous magnetic moment of the muon, recently released by the Muon g-2 experiment at Fermilab, can serve to set stringent constraints on new particles. If the observed 4
σ
discrepancy from the Standard Model value is indeed real, it will set a tight margin on the scale of the masses and couplings of these particles. Instead, if the discrepancy is simply a result of additional theoretical and experimental uncertainties to be included, strong constraints can be put on their parameters. In this mini-review, we summarize the impact of the latest muon g-2 measurement on new fermions that are predicted by a wide range of new physics models and with exotic quantum numbers and interactions. We will particularly discuss the case of vector-like leptons, excited leptons, and supersymmetric fermions, as well as spin-3/2 isosinglet fermions, which have been advocated recently. |
---|---|
ISSN: | 2296-424X 2296-424X |
DOI: | 10.3389/fphy.2022.964131 |