Design of a 1-Bit MEMS Gyroscope Using the Model Predictive Control Approach
In this paper, a bi-level Delta-Sigma modulator-based MEMS gyroscope design is presented based on a Model Predictive Control (MPC) approach. The MPC is popular because of its capability of handling hard constraints. In this work, we propose to combine the 1-bit nature of the bi-level Delta-Sigma mod...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2019-02, Vol.19 (3), p.730 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a bi-level Delta-Sigma modulator-based MEMS gyroscope design is presented based on a Model Predictive Control (MPC) approach. The MPC is popular because of its capability of handling hard constraints. In this work, we propose to combine the 1-bit nature of the bi-level Delta-Sigma modulator output with the MPC to develop a 1-bit processing-based MPC (OBMPC). This paper will focus on the affine relationship between the 1-bit feedback and the in-loop MPC controller, as this can potentially remove the multipliers from the controller. In doing so, the computational requirement of the MPC control is significantly alleviated, which makes the 1-bit MEMS Gyroscope feasible for implementation. In addition, a stable constrained MPC is designed, so that the input will not overload the quantizer while maintaining a higher Signal-to-Noise Ratio (SNR). |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s19030730 |