Generative Oversampling Method for Imbalanced Data on Bearing Fault Detection and Diagnosis
In this study, we developed a novel data-driven fault detection and diagnosis (FDD) method for bearing faults in induction motors where the fault condition data are imbalanced. First, we propose a bearing fault detector based on convolutional neural networks (CNN), in which the vibration signals fro...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2019-02, Vol.9 (4), p.746 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we developed a novel data-driven fault detection and diagnosis (FDD) method for bearing faults in induction motors where the fault condition data are imbalanced. First, we propose a bearing fault detector based on convolutional neural networks (CNN), in which the vibration signals from a test bench are used as inputs after an image transformation procedure. Experimental results demonstrate that the proposed classifier for FDD performs well (accuracy of 88% to 99%) even when the volume of normal and fault condition data is imbalanced (imbalance ratio varies from 20:1 to 200:1). Additionally, our generative model reduces the level of data imbalance by oversampling. The results improve the accuracy of FDD (by up to 99%) when a severe imbalance ratio (200:1) is assumed. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9040746 |