Housing Price Prediction Using Machine Learning Algorithms in COVID-19 Times

Machine learning algorithms are being used for multiple real-life applications and in research. As a consequence of digital technology, large structured and georeferenced datasets are now more widely available, facilitating the use of these algorithms to analyze and identify patterns, as well as to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Land (Basel) 2022-11, Vol.11 (11), p.2100
Hauptverfasser: Mora-Garcia, Raul-Tomas, Cespedes-Lopez, Maria-Francisca, Perez-Sanchez, V. Raul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning algorithms are being used for multiple real-life applications and in research. As a consequence of digital technology, large structured and georeferenced datasets are now more widely available, facilitating the use of these algorithms to analyze and identify patterns, as well as to make predictions that help users in decision making. This research aims to identify the best machine learning algorithms to predict house prices, and to quantify the impact of the COVID-19 pandemic on house prices in a Spanish city. The methodology addresses the phases of data preparation, feature engineering, hyperparameter training and optimization, model evaluation and selection, and finally model interpretation. Ensemble learning algorithms based on boosting (Gradient Boosting Regressor, Extreme Gradient Boosting, and Light Gradient Boosting Machine) and bagging (random forest and extra-trees regressor) are used and compared with a linear regression model. A case study is developed with georeferenced microdata of the real estate market in Alicante (Spain), before and after the pandemic declaration derived from COVID-19, together with information from other complementary sources such as the cadastre, socio-demographic and economic indicators, and satellite images. The results show that machine learning algorithms perform better than traditional linear models because they are better adapted to the nonlinearities of complex data such as real estate market data. Algorithms based on bagging show overfitting problems (random forest and extra-trees regressor) and those based on boosting have better performance and lower overfitting. This research contributes to the literature on the Spanish real estate market by being one of the first studies to use machine learning and microdata to explore the incidence of the COVID-19 pandemic on house prices.
ISSN:2073-445X
2073-445X
DOI:10.3390/land11112100