Wound healing potential: evaluation of molecular profiling and amplification of Lucilia sericata angiopoietin-1 mRNA mid-part

High prevalence of chronic ulcers and the burden of disease necessitate the increasingly significant production of new recombinant proteins in the world. The angiopoietin-1 enzyme is a part of the growth factors group which is secreted by Lucilia sericata (Diptera: Calliphoridae) larvae when they me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC research notes 2020-07, Vol.13 (1), p.308-308, Article 308
Hauptverfasser: Alipour, Hamzeh, Shahriari-Namadi, Marziae, Ebrahimi, Saeedeh, Moemenbellah-Fard, Mohammad D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High prevalence of chronic ulcers and the burden of disease necessitate the increasingly significant production of new recombinant proteins in the world. The angiopoietin-1 enzyme is a part of the growth factors group which is secreted by Lucilia sericata (Diptera: Calliphoridae) larvae when they meet lesions to ensure maggot therapy. It is one of the most potent proteins in wound healing. Given its essential role, the angiopoietin-1 gene of L. sericata was characterized, which provided some necessary information on its identity. The mid-part of the angiopoietin-1 mRNA sequence was thus characterized based on the design of different primers such as exon-exon junction, conserved regions, and specific region primers via conventional polymerase chain reaction (PCR). Its structural features were configured by in silico method. The sequence of mid-part (390 bp) of angiopoietin-1 was determined empirically, and BLAST analysis unraveled its high identity (85%) with the sequence of angiopoietin-1 mRNA of the larval housefly, Musca domestica. The homology of this enzyme also exhibited that its nucleic acid sequence was very similar to the domains of angiopoietin-1 in Lucilia cuprina. The current data are instructive and critical to evaluate the action of this enzyme in recombinant protein production in future molecular studies on wound healing.
ISSN:1756-0500
1756-0500
DOI:10.1186/s13104-020-05141-y