De novo main-chain modeling for EM maps using MAINMAST

An increasing number of protein structures are determined by cryo-electron microscopy (cryo-EM) at near atomic resolution. However, tracing the main-chains and building full-atom models from EM maps of ~4–5 Å is still not trivial and remains a time-consuming task. Here, we introduce a fully automate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-04, Vol.9 (1), p.1618-11, Article 1618
Hauptverfasser: Terashi, Genki, Kihara, Daisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An increasing number of protein structures are determined by cryo-electron microscopy (cryo-EM) at near atomic resolution. However, tracing the main-chains and building full-atom models from EM maps of ~4–5 Å is still not trivial and remains a time-consuming task. Here, we introduce a fully automated de novo structure modeling method, MAINMAST, which builds three-dimensional models of a protein from a near-atomic resolution EM map. The method directly traces the protein’s main-chain and identifies Cα positions as tree-graph structures in the EM map. MAINMAST performs significantly better than existing software in building global protein structure models on data sets of 40 simulated density maps at 5 Å resolution and 30 experimentally determined maps at 2.6–4.8 Å resolution. In another benchmark of building missing fragments in protein models for EM maps, MAINMAST builds fragments of 11–161 residues long with an average RMSD of 2.68 Å. Main-chain tracing remains a time-consuming task for medium resolution cryo-EM maps. Here the authors describe MAINMAST, a computational approach for building main-chain structure models of proteins from EM maps of 4-5 Å resolution that builds main-chain models of the protein by tracing local dense points in the density distribution.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-04053-7