Deep Learning of Ultrasound Imaging for Evaluating Ambulatory Function of Individuals with Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) results in loss of ambulation and premature death. Ultrasound provides real-time, safe, and cost-effective routine examinations. Deep learning allows the automatic generation of useful features for classification. This study utilized deep learning of ultrasound imag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diagnostics (Basel) 2021-05, Vol.11 (6), p.963
Hauptverfasser: Liao, Ai-Ho, Chen, Jheng-Ru, Liu, Shi-Hong, Lu, Chun-Hao, Lin, Chia-Wei, Shieh, Jeng-Yi, Weng, Wen-Chin, Tsui, Po-Hsiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Duchenne muscular dystrophy (DMD) results in loss of ambulation and premature death. Ultrasound provides real-time, safe, and cost-effective routine examinations. Deep learning allows the automatic generation of useful features for classification. This study utilized deep learning of ultrasound imaging for classifying patients with DMD based on their ambulatory function. A total of 85 individuals (including ambulatory and nonambulatory subjects) underwent ultrasound examinations of the gastrocnemius for deep learning of image data using LeNet, AlexNet, VGG-16, VGG-16TL, VGG-19, and VGG-19TL models (the notation TL indicates fine-tuning pretrained models). Gradient-weighted class activation mapping (Grad-CAM) was used to visualize features recognized by the models. The classification performance was evaluated using the confusion matrix and receiver operating characteristic (ROC) curve analysis. The results show that each deep learning model endows muscle ultrasound imaging with the ability to enable DMD evaluations. The Grad-CAMs indicated that boundary visibility, muscular texture clarity, and posterior shadowing are relevant sonographic features recognized by the models for evaluating ambulatory function. Of the proposed models, VGG-19 provided satisfying classification performance (the area under the ROC curve: 0.98; accuracy: 94.18%) and feature recognition in terms of physical characteristics. Deep learning of muscle ultrasound is a potential strategy for DMD characterization.
ISSN:2075-4418
2075-4418
DOI:10.3390/diagnostics11060963