A Functionally Significant Cross-talk between Androgen Receptor and ErbB2 Pathways in Estrogen Receptor Negative Breast Cancer
Recent studies have identified novel subgroups in ER-negative breast cancer based on the expression pattern of androgen receptor (AR). One subtype (molecular apocrine) has an over-expression of steroid-response genes and ErbB2. Using breast cancer cell lines with molecular apocrine features, we demo...
Gespeichert in:
Veröffentlicht in: | Neoplasia (New York, N.Y.) N.Y.), 2008-06, Vol.10 (6), p.542-548 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent studies have identified novel subgroups in ER-negative breast cancer based on the expression pattern of androgen receptor (AR). One subtype (molecular apocrine) has an over-expression of steroid-response genes and ErbB2. Using breast cancer cell lines with molecular apocrine features, we demonstrate a functional cross-talk between AR and ErbB2 pathways. We show that stimulation of AR and ErbB2 pathways leads to the cross-regulation of gene expression for AR, ErbB2, FOXA1, XBP1, TFF3, and KLK3. As opposed to the physiologic transient phosphorylation of extracellular signal–regulated kinase (ERK1/2) observed with the testosterone treatment, we demonstrate that the addition of ErbB2 inhibition leads to a persistent phosphorylation of ERK1/2, which negatively regulates the downstream signaling and cell growth. This suggests a mechanism for the cross-talk involving the ERK pathway. Moreover, testosterone stimulates the proliferation of molecular apocrine breast cell lines, and this effect can be reversed using antiandrogen flutamide and anti-ErbB2 AG825. Conversely, the growth stimulatory effect of heregulin can also be inhibited with flutamide, suggesting a cross-talk between the AR and ErbB2 pathways affecting cell proliferation. Importantly, there is a synergy with the combined use of flutamide and AG825 on cell proliferation and apoptosis, which indicates a therapeutic advantage in the combined blockage of AR and ErbB2 pathways. |
---|---|
ISSN: | 1476-5586 1522-8002 1476-5586 1522-8002 |
DOI: | 10.1593/neo.08274 |