Research on vibration monitoring and fault diagnosis of rotating machinery based on internet of things technology
Recently, researchers are investing more fervently in fault diagnosis area of electrical machines. The users and manufacturers of these various efforts are strong to contain diagnostic features in software for improving reliability and scalability. Internet of Things (IoT) has grown immensely and co...
Gespeichert in:
Veröffentlicht in: | Nonlinear engineering 2021-01, Vol.10 (1), p.245-254 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, researchers are investing more fervently in fault diagnosis area of electrical machines. The users and manufacturers of these various efforts are strong to contain diagnostic features in software for improving reliability and scalability. Internet of Things (IoT) has grown immensely and contributing for the development of recent technological advancements in industries, medical and various environmental applications. It provides efficient processing power through cloud, and presents various new opportunities for industrial automation by implementing IoT and industrial wireless sensor networks. The process of regular monitoring enables early detection of machine faults and hence beneficial for Industrial automation by providing efficient process control. The performance of fault detection and its classification by implementing machine-learning algorithms highly dependent on the amount of features involved. The accuracy of classification will adversely affect by the dimensionality features increment. To address these problems, the proposed work presents the extraction of relevant features based on oriented sport vector machine (FO-SVM). The proposed algorithm is capable for extracting the most relevant feature set and hence presenting the accurate classification of faults accordingly. The extraction of most relevant features before the process of classification results in higher classification accuracy. Moreover it is observed that the lesser dimensionality of propose process consumes less time and more suitable for cloud. The experimental analysis based on the implementation of proposed approach provides and solution for the monitoring of machine condition and prediction of fault accurately based on cloud platform using industrial wireless sensor networks and IoT service. |
---|---|
ISSN: | 2192-8010 2192-8029 |
DOI: | 10.1515/nleng-2021-0019 |