Error mitigation on a near-term quantum photonic device
Photon loss is destructive to the performance of quantum photonic devices and therefore suppressing the effects of photon loss is paramount to photonic quantum technologies. We present two schemes to mitigate the effects of photon loss for a Gaussian Boson Sampling device, in particular, to improve...
Gespeichert in:
Veröffentlicht in: | Quantum (Vienna, Austria) Austria), 2021-05, Vol.5, p.452, Article 452 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photon loss is destructive to the performance of quantum photonic devices and therefore suppressing the effects of photon loss is paramount to photonic quantum technologies. We present two schemes to mitigate the effects of photon loss for a Gaussian Boson Sampling device, in particular, to improve the estimation of the sampling probabilities. Instead of using error correction codes which are expensive in terms of their hardware resource overhead, our schemes require only a small amount of hardware modifications or even no modification. Our loss-suppression techniques rely either on collecting additional measurement data or on classical post-processing once the measurement data is obtained. We show that with a moderate cost of classical post processing, the effects of photon loss can be significantly suppressed for a certain amount of loss. The proposed schemes are thus a key enabler for applications of near-term photonic quantum devices. |
---|---|
ISSN: | 2521-327X 2521-327X |
DOI: | 10.22331/q-2021-05-04-452 |