Deep Convolutional Neural Network Model for Automated Diagnosis of Schizophrenia Using EEG Signals
A computerized detection system for the diagnosis of Schizophrenia (SZ) using a convolutional neural system is described in this study. Schizophrenia is an anomaly in the brain characterized by behavioral symptoms such as hallucinations and disorganized speech. Electroencephalograms (EEG) indicate b...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2019-07, Vol.9 (14), p.2870 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A computerized detection system for the diagnosis of Schizophrenia (SZ) using a convolutional neural system is described in this study. Schizophrenia is an anomaly in the brain characterized by behavioral symptoms such as hallucinations and disorganized speech. Electroencephalograms (EEG) indicate brain disorders and are prominently used to study brain diseases. We collected EEG signals from 14 healthy subjects and 14 SZ patients and developed an eleven-layered convolutional neural network (CNN) model to analyze the signals. Conventional machine learning techniques are often laborious and subject to intra-observer variability. Deep learning algorithms that have the ability to automatically extract significant features and classify them are thus employed in this study. Features are extracted automatically at the convolution stage, with the most significant features extracted at the max-pooling stage, and the fully connected layer is utilized to classify the signals. The proposed model generated classification accuracies of 98.07% and 81.26% for non-subject based testing and subject based testing, respectively. The developed model can likely aid clinicians as a diagnostic tool to detect early stages of SZ. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9142870 |