Intercalation of Nontronite Clays from Santa Elena, Ecuador, Using Different Surfactant Hydrophobicity
The research of organoclays has been occurring for many years to develop and add value to these inorganic materials for several industrial applications, such as pollutant absorbers or impermeable plastics. The organoclay applications are intrinsically related to organo-modification and the structure...
Gespeichert in:
Veröffentlicht in: | Minerals (Basel) 2023-02, Vol.13 (2), p.272 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The research of organoclays has been occurring for many years to develop and add value to these inorganic materials for several industrial applications, such as pollutant absorbers or impermeable plastics. The organoclay applications are intrinsically related to organo-modification and the structure of clays. This study shows the preparation and characterization of organoclays produced by a nontronite type clay (calcic bentonite) from the Tosagua Formation in the peninsula of Santa Elena in Ecuador. These clays were purified and centrifuged before organo-treatment. The purification and separation processes were used to remove organic matter and carbonates, and a cationic interchange from calcic to sodic (Ca2+ to Na+) was carried out. Organo-modification was performed using two types of cationic compounds, i.e., Oleylmethylbis (2-hydroxyethyl) ammonium chloride and Di (hydrogenated tallow alkyl) quaternary amine to organoclay with different surface hydrophobicity. The samples were characterized by X-ray diffractometry (XRD), infrared spectrometry (FT-IR), thermo-gravimetry (TGA), and scanning electron microscopy (SEM) to analyze the effect after the mentioned treatment and the resulting organoclays by the addition of these surfactants. The results confirm the significant intercalation of the organic treatment suitable for environmental remediation, compatibilizing recycled plastics, or improving performance in different hydrophobicity systems for industrial applications. |
---|---|
ISSN: | 2075-163X 2075-163X |
DOI: | 10.3390/min13020272 |