Measurement of lysophospholipid acyltransferase activities using substrate competition[S]
Lysophospholipid acyltransferases (LPATs) incorporate fatty acyl chains into phospholipids via a CoA-dependent mechanism and are important in remodeling phospholipids to generate the molecular species of phospholipids found in cells. These enzymes use one lysophospholipid and one acyl-CoA ester as s...
Gespeichert in:
Veröffentlicht in: | Journal of lipid research 2014-04, Vol.55 (4), p.782-791 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lysophospholipid acyltransferases (LPATs) incorporate fatty acyl chains into phospholipids via a CoA-dependent mechanism and are important in remodeling phospholipids to generate the molecular species of phospholipids found in cells. These enzymes use one lysophospholipid and one acyl-CoA ester as substrates. Traditional enzyme activity assays engage a single substrate pair, whereas in vivo multiple molecular species exist. We describe here an alternative biochemical assay that provides a mixture of substrates presented to the microsomal extracts. Microsomal preparations from RAW 264.7 cells were used to compare traditional LPAT assays with data obtained using a dual substrate choice assay using six different lysophospholipids and eight different acyl-CoA esters. The complex mixture of newly synthesized phospholipid products was analyzed using LC-MS/MS. Both types of assays provided similar results, but the dual choice assay provided information about multiple fatty acyl chain incorporation into various phospholipid classes in a single reaction. Engineered suppression of LPCAT3 activity in RAW 264.7 cells was easily detected by the dual choice method. These findings demonstrate that this assay is both specific and sensitive and that it provides much richer biochemical detail than traditional assays. |
---|---|
ISSN: | 0022-2275 1539-7262 |
DOI: | 10.1194/jlr.D044636 |