The quality comparison of particleboards produced from heartwood and sapwood of European larch

In this paper, the impacts of heartwood and sapwood usage on the physical, mechanical, and surface properties and formaldehyde emission of particleboard are investigated. European Larch (Larix decidua) trees are chosen as a raw material. The logs are divided into three segments: sapwood, heartwood a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Maderas 2019, Vol.21 (ahead), p.511-520
Hauptverfasser: Bardak, Selahattin, Nemli, Gökay, Bardak, Timuçin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the impacts of heartwood and sapwood usage on the physical, mechanical, and surface properties and formaldehyde emission of particleboard are investigated. European Larch (Larix decidua) trees are chosen as a raw material. The logs are divided into three segments: sapwood, heartwood and total wood. The highest amounts of cellulose (51,54%), and hemicelluloses (22,24%) in the sapwood, followed by total wood, and the heartwood, respectively. However, the highest amount of lignin (30,54%) was found in the heartwood. The highest extractives values are obtained from heartwood, followed by total wood, and the sapwood, respectively. While the lowest pH value (3,03) is found in heartwood, the sapwood samples provide the highest values (4,95). The highest ash (0,49%) content and amount of condensed tannin (13,89%) are extracted from heartwood, followed by total wood, and sapwood, respectively. The test panels manufactured from sapwood have the smoothest surface (7,49 µm (Ra), 48,86 µm (Ry), and 35,12 µm (Rz)) and the lowest contact angles (67,8°), while the roughest surface (14,20 µm (Ra), 68,05 µm (Ry), and 50,02 µm (Rz)) and highest contact angle (96,9°) are obtained from the panels of heartwood. The thickness swelling (19,88%) and formaldehyde emission (7,28%) values of the panels manufactured from heartwood are significantly lower than the panels manufactured from the total wood and sapwood. The highest modulus of rupture (MOR), modulus of elasticity (MOE), and internal bond (IB) values are observed on sapwood, respectively, 15,60 MPa (MOR), 2201 MPa (MOE), and 0,523 MPa (IB). These mechanical strength values (MOR, MOE, and IB) are followed by total wood, and the heartwood, respectively. Surface smoothness and wettability of the particleboards manufactured from sapwood are better than those of total wood and heartwood.
ISSN:0718-221X
0717-3644
0718-221X
DOI:10.4067/S0718-221X2019005000407