Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation
This paper proposes a numerical scheme for the Allen-Cahn equation that represents a phenomenological model for anti-phase domain coarsening in a binary mixture. In order to obtain a high order discretization in space, we adopt the barycentric interpolation collocation method. The semi-discretized s...
Gespeichert in:
Veröffentlicht in: | AIMS Mathematics 2021-01, Vol.6 (4), p.3857-3873 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a numerical scheme for the Allen-Cahn equation that represents a phenomenological model for anti-phase domain coarsening in a binary mixture. In order to obtain a high order discretization in space, we adopt the barycentric interpolation collocation method. The semi-discretized scheme in space is shown to be consistent. The second-order Crank-Nicolson scheme is used for temporal discretization and the simple iteration method is adopted for nonlinear term. Corresponding algebraic system is derived. Numerical examples are demonstrated to validate the efficiency of the proposed method. Keywords: Allen-Cahn equation; barycentric interpolation collocation method; consistency analysis; Crank-Nicolson scheme; energy decline Mathematics Subject Classification: 65M70, 65L20 |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2021229 |