Ontology-aware deep learning enables ultrafast and interpretable source tracking among sub-million microbial community samples from hundreds of niches

The taxonomic structure of microbial community sample is highly habitat-specific, making source tracking possible, allowing identification of the niches where samples originate. However, current methods face challenges when source tracking is scaled up. Here, we introduce a deep learning method base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome medicine 2022-04, Vol.14 (1), p.43-43, Article 43
Hauptverfasser: Zha, Yuguo, Chong, Hui, Qiu, Hao, Kang, Kai, Dun, Yuzheng, Chen, Zhixue, Cui, Xuefeng, Ning, Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The taxonomic structure of microbial community sample is highly habitat-specific, making source tracking possible, allowing identification of the niches where samples originate. However, current methods face challenges when source tracking is scaled up. Here, we introduce a deep learning method based on the Ontology-aware Neural Network approach, ONN4MST, for large-scale source tracking. ONN4MST outperformed other methods with near-optimal accuracy when source tracking among 125,823 samples from 114 niches. ONN4MST also has a broad spectrum of applications. Overall, this study represents the first model-based method for source tracking among sub-million microbial community samples from hundreds of niches, with superior speed, accuracy, and interpretability. ONN4MST is available at https://github.com/HUST-NingKang-Lab/ONN4MST .
ISSN:1756-994X
1756-994X
DOI:10.1186/s13073-022-01047-5