Effects of noise on the internal resonance of a nonlinear oscillator

We numerically analyze the response to noise of a system formed by two coupled mechanical oscillators, one of them having Duffing and van der Pol nonlinearities, and being excited by a self–sustaining force proportional to its own velocity. This system models the internal resonance of two oscillatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-04, Vol.8 (1), p.5976-9, Article 5976
1. Verfasser: Zanette, Damián H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We numerically analyze the response to noise of a system formed by two coupled mechanical oscillators, one of them having Duffing and van der Pol nonlinearities, and being excited by a self–sustaining force proportional to its own velocity. This system models the internal resonance of two oscillation modes in a vibrating solid beam clamped at both ends. In applications to nano– and micromechanical devices, clamped–clamped beams are subjected to relatively large thermal and electronic noise, so that characterizing the fluctuations induced by these effects is an issue of both scientific and technological interest. We pay particular attention to the action of stochastic forces on the stability of internal–resonance motion, showing that resonant oscillations become more robust than other forms of periodic motion as the quality factor of the resonant mode increases. The dependence on other model parameters —in particular, on the coupling strength between the two oscillators— is also assessed.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-24383-2