Ultrafast Detection of SARS-CoV-2 Spike Protein (S) and Receptor-Binding Domain (RBD) in Saliva Using Surface-Enhanced Raman Spectroscopy

Controlling contagious diseases necessitates using diagnostic techniques that can detect infection in the early stages. Although different diagnostic tools exist, there are still challenges related to accuracy, rapidity, cost-effectiveness, and ease of use. Surface-enhanced Raman spectroscopy (SERS)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-05, Vol.12 (10), p.5039
Hauptverfasser: Abdullah, Mohammed Ba, Dab, Chahinez, Almalki, Mohammed, Alnaim, Abdullah, Abuzir, Alaaedeen, Awada, Chawki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Controlling contagious diseases necessitates using diagnostic techniques that can detect infection in the early stages. Although different diagnostic tools exist, there are still challenges related to accuracy, rapidity, cost-effectiveness, and ease of use. Surface-enhanced Raman spectroscopy (SERS) is a rapid, simple, less expensive, and accurate method. We continue our previous work published on SERS detection of the SARS-CoV-2 receptor-binding domain (RBD) in water. In this work, we replace water with saliva to detect SARS-CoV-2 proteins at very low concentrations and during a very short time. We prepared a very low concentration of 10−9 M SARS-CoV-2 spike protein (S) and SARS-CoV-2 receptor-binding domain (RBD) in saliva to mimic a real case scenario. Then, we drop them on a SERS substrate. Using modified SERS measurements on the control and the sample containing the biomolecules, confirmed the sensitivity of the target identification. This technique provides different diagnostic solutions that are fast, simple, non-destructive and ultrasensitive. Simulation of the real-world of silicon wire covered with silver and gold, were performed using an effective and accurate tool, COMSOL Multiphysics software, for the enhancement properties study.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12105039