Application of TRIZ Innovation Method to In-Pipe Robot Design
The peristaltic in-pipe robot incorporates multiple actuators, and achieving precise cooperative control among these actuators poses significant complexity. To address these issues, the Theory of Inventive Problem Solving (TRIZ) is applied to identify and resolve physical and technical conflicts in...
Gespeichert in:
Veröffentlicht in: | Machines (Basel) 2023-09, Vol.11 (9), p.912 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The peristaltic in-pipe robot incorporates multiple actuators, and achieving precise cooperative control among these actuators poses significant complexity. To address these issues, the Theory of Inventive Problem Solving (TRIZ) is applied to identify and resolve physical and technical conflicts in the creative design process of peristaltic in-pipe robots. By highlighting the insights on and technical guidance offered by TRIZ’s inventive principles, this paper examines the method for realizing a single-motor-driven peristaltic in-pipe robot from a transmission perspective. By employing a combination of connecting rods, cam mechanisms, and gear systems, a one-DOF peristaltic in-pipe robot was devised. Subsequently, a prototype was constructed, and successful bidirectional motion tests were conducted within pipes. The findings highlight the efficacy of the TRIZ-based design approach in innovatively designing one-DOF in-pipe robots and the unnecessary employment of complex multi-drive cooperative control in peristaltic in-pipe robots. |
---|---|
ISSN: | 2075-1702 2075-1702 |
DOI: | 10.3390/machines11090912 |