Wilm’s tumor 1 promotes memory flexibility

Under physiological conditions, strength and persistence of memory must be regulated in order to produce behavioral flexibility. In fact, impairments in memory flexibility are associated with pathologies such as post-traumatic stress disorder or autism; however, the underlying mechanisms that enable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-08, Vol.10 (1), p.3756-18, Article 3756
Hauptverfasser: Mariottini, Chiara, Munari, Leonardo, Gunzel, Ellen, Seco, Joseph M., Tzavaras, Nikos, Hansen, Jens, Stern, Sarah A., Gao, Virginia, Aleyasin, Hossein, Sharma, Ali, Azeloglu, Evren U., Hodes, Georgia E., Russo, Scott J., Huff, Vicki, Birtwistle, Marc R., Blitzer, Robert D., Alberini, Cristina M., Iyengar, Ravi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Under physiological conditions, strength and persistence of memory must be regulated in order to produce behavioral flexibility. In fact, impairments in memory flexibility are associated with pathologies such as post-traumatic stress disorder or autism; however, the underlying mechanisms that enable memory flexibility are still poorly understood. Here, we identify transcriptional repressor Wilm’s Tumor 1 (WT1) as a critical synaptic plasticity regulator that decreases memory strength, promoting memory flexibility. WT1 is activated in the hippocampus following induction of long-term potentiation (LTP) or learning. WT1 knockdown enhances CA1 neuronal excitability, LTP and long-term memory whereas its overexpression weakens memory retention. Moreover, forebrain WT1-deficient mice show deficits in both reversal, sequential learning tasks and contextual fear extinction, exhibiting impaired memory flexibility. We conclude that WT1 limits memory strength or promotes memory weakening, thus enabling memory flexibility, a process that is critical for learning from new experiences. Impairments in memory flexibility are associated with neuropsychiatric disorders such as PTSD and autism. Here, the authors report that the transcriptional repressor Wilm's Tumor 1 regulates synaptic plasticity leading to weakening of memory strength and enabling memory flexibility.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-11781-x