Chip-Firing And A Devil's Staircase

The devil's staircase ― a continuous function on the unit interval $[0,1]$ which is not constant, yet is locally constant on an open dense set ― is the sort of exotic creature a combinatorialist might never expect to encounter in "real life.'' We show how a devil's staircase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science 2009-01, Vol.DMTCS Proceedings vol. AK,... (Proceedings), p.573-584
1. Verfasser: Levine, Lionel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The devil's staircase ― a continuous function on the unit interval $[0,1]$ which is not constant, yet is locally constant on an open dense set ― is the sort of exotic creature a combinatorialist might never expect to encounter in "real life.'' We show how a devil's staircase arises from the combinatorial problem of parallel chip-firing on the complete graph. This staircase helps explain a previously observed "mode locking'' phenomenon, as well as the surprising tendency of parallel chip-firing to find periodic states of small period.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.2693