Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps

Alteration of ultramafic rocks plays a major role in the production of hydrocarbons and organic compounds via abiotic processes on Earth and beyond and contributes to the redistribution of C between solid and fluid reservoirs over geological cycles. Abiotic methanogenesis in ultramafic rocks is well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-02, Vol.8 (1), p.14134-14134, Article 14134
Hauptverfasser: Vitale Brovarone, Alberto, Martinez, Isabelle, Elmaleh, Agnès, Compagnoni, Roberto, Chaduteau, Carine, Ferraris, Cristiano, Esteve, Imène
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alteration of ultramafic rocks plays a major role in the production of hydrocarbons and organic compounds via abiotic processes on Earth and beyond and contributes to the redistribution of C between solid and fluid reservoirs over geological cycles. Abiotic methanogenesis in ultramafic rocks is well documented at shallow conditions, whereas natural evidence at greater depths is scarce. Here we provide evidence for intense high-pressure abiotic methanogenesis by reduction of subducted ophicarbonates. Protracted (≥0.5–1 Ma), probably episodic infiltration of reduced fluids in the ophicarbonates and methanogenesis occurred from at least ∼40 km depth to ∼15–20 km depth. Textural, petrological and isotopic data indicate that methane reached saturation triggering the precipitation of graphitic C accompanied by dissolution of the precursor antigorite. Continuous infiltration of external reducing fluids caused additional methane production by interaction with the newly formed graphite. Alteration of high-pressure carbonate-bearing ultramafic rocks may represent an important source of abiotic methane, with strong implications for the mobility of deep C reservoirs. Alteration of ultramafic rocks plays a role in hydrocarbon production, but little is known about this process at depth. Here, the authors provide evidence that alteration of carbonated ultramafic rocks at high-pressures are an important source of abiotic methanogenesis with implications for deep C mobility.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms14134