Quantitative GABA magnetic resonance spectroscopy as a measure of motor learning function in the motor cortex after subarachnoid hemorrhage
The neural mechanisms underlying gross and fine motor dysfunction after subarachnoid hemorrhage (SAH) remain unknown. The γ-aminobutyric acid (GABA) deficit hypothesis proposes that reduced neuronal GABA concentrations and the subsequent lack of GABA-mediated inhibition cause motor impairment after...
Gespeichert in:
Veröffentlicht in: | Frontiers in neurology 2023-10, Vol.14, p.1173285-1173285 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The neural mechanisms underlying gross and fine motor dysfunction after subarachnoid hemorrhage (SAH) remain unknown. The γ-aminobutyric acid (GABA) deficit hypothesis proposes that reduced neuronal GABA concentrations and the subsequent lack of GABA-mediated inhibition cause motor impairment after SAH. This study aimed to explore the correlation between GABA levels and a behavioral measure of motor performance in patients with SAH. Motor cortical GABA levels were assessed in 40 patients with SAH and 10 age-matched healthy controls using proton magnetic resonance spectroscopy. The GABA and N-acetylasparate (NAA) ratio was measured in the normal gray matter within the primary motor cortex. The relationship between GABA concentration and hand-motor performance was also evaluated. Results showed significantly lower GABA levels in patients with SAH's left motor cortex than in controls (GABA/NAA ratio: 0.282 ± 0.085 vs. 0.341 ± 0.031, respectively;
p
= 0.041). Reaction times (RTs), a behavioral measure of motor performance potentially dependent on GABAergic synaptic transmission, were significantly longer in patients than in controls (936.8 ± 303.8 vs. 440.2 ± 67.3 ms, respectively;
p
< 0.001). Moreover, motor cortical GABA levels and RTs exhibited a significant positive linear correlation among patients (
r
= 0.572,
rs
= 0.327,
p
= 0.0001). Therefore, a decrease in GABA levels in the primary motor cortex after SAH may lead to impaired cortical inhibition of neuronal function and indicates that GABA-mediated synaptic transmission in the motor cortex is critical for RT. |
---|---|
ISSN: | 1664-2295 1664-2295 |
DOI: | 10.3389/fneur.2023.1173285 |