Channel and temporal-frequency attention UNet for monaural speech enhancement

The presence of noise and reverberation significantly impedes speech clarity and intelligibility. To mitigate these effects, numerous deep learning-based network models have been proposed for speech enhancement tasks aimed at improving speech quality. In this study, we propose a monaural speech enha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on audio, speech, and music processing speech, and music processing, 2023-08, Vol.2023 (1), p.30-14, Article 30
Hauptverfasser: Xu, Shiyun, Zhang, Zehua, Wang, Mingjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The presence of noise and reverberation significantly impedes speech clarity and intelligibility. To mitigate these effects, numerous deep learning-based network models have been proposed for speech enhancement tasks aimed at improving speech quality. In this study, we propose a monaural speech enhancement model called the channel and temporal-frequency attention UNet (CTFUNet). CTFUNet takes the noisy spectrum as input and produces a complex ideal ratio mask (cIRM) as output. To improve the speech enhancement performance of CTFUNet, we employ multi-scale temporal-frequency processing to extract input speech spectrum features. We also utilize multi-conv head channel attention and residual channel attention to capture temporal-frequency and channel features. Moreover, we introduce the channel temporal-frequency skip connection to alleviate information loss between down-sampling and up-sampling. On the blind test set of the first deep noise suppression challenge, our proposed CTFUNet has better denoising performance than the champion models and the latest models. Furthermore, our model outperforms recent models such as Uformar and MTFAA in both denoising and dereverberation performance.
ISSN:1687-4722
1687-4714
1687-4722
DOI:10.1186/s13636-023-00295-6