Machine learning for fast development of advanced energy materials
With its unique advantages in artificial intelligence, data analysis, interpolation and numerical extrapolation, etc. ML has recently been quickly developed for the discovery of advanced energy materials. In particular, many algorithms have been developed to predict material properties. Herein, we f...
Gespeichert in:
Veröffentlicht in: | Next materials 2023-09, Vol.1 (3), p.100025, Article 100025 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With its unique advantages in artificial intelligence, data analysis, interpolation and numerical extrapolation, etc. ML has recently been quickly developed for the discovery of advanced energy materials. In particular, many algorithms have been developed to predict material properties. Herein, we first introduce the ML algorithms used in material science and the structure of each algorithm. Then we examine the algorithms that have been used recently in functional materials, especially in solar cells, batteries, and phase-change materials. Finally, advantages and disadvantages of each algorithm are compared to aid readers in choosing a suitable algorithm for specific applications. |
---|---|
ISSN: | 2949-8228 2949-8228 |
DOI: | 10.1016/j.nxmate.2023.100025 |