Astrocyte-mediated switch in spike timing-dependent plasticity during hippocampal development

Presynaptic spike timing-dependent long-term depression (t-LTD) at hippocampal CA3-CA1 synapses is evident until the 3 rd postnatal week in mice, disappearing during the 4 th week. At more mature stages, we found that the protocol that induced t-LTD induced t-LTP. We characterized this form of t-LTP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-09, Vol.11 (1), p.4388-4388, Article 4388
Hauptverfasser: Falcón-Moya, Rafael, Pérez-Rodríguez, Mikel, Prius-Mengual, José, Andrade-Talavera, Yuniesky, Arroyo-García, Luis E., Pérez-Artés, Rocío, Mateos-Aparicio, Pedro, Guerra-Gomes, Sónia, Oliveira, João Filipe, Flores, Gonzalo, Rodríguez-Moreno, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Presynaptic spike timing-dependent long-term depression (t-LTD) at hippocampal CA3-CA1 synapses is evident until the 3 rd postnatal week in mice, disappearing during the 4 th week. At more mature stages, we found that the protocol that induced t-LTD induced t-LTP. We characterized this form of t-LTP and the mechanisms involved in its induction, as well as that driving this switch from t-LTD to t-LTP. We found that this t-LTP is expressed presynaptically at CA3-CA1 synapses, as witnessed by coefficient of variation, number of failures, paired-pulse ratio and miniature responses analysis. Additionally, this form of presynaptic t-LTP does not require NMDARs but the activation of mGluRs and the entry of Ca 2+ into the postsynaptic neuron through L-type voltage-dependent Ca 2+ channels and the release of Ca 2+ from intracellular stores. Nitric oxide is also required as a messenger from the postsynaptic neuron. Crucially, the release of adenosine and glutamate by astrocytes is required for t-LTP induction and for the switch from t-LTD to t-LTP. Thus, we have discovered a developmental switch of synaptic transmission from t-LTD to t-LTP at hippocampal CA3-CA1 synapses in which astrocytes play a central role and revealed a form of presynaptic LTP and the rules for its induction. Presynaptic spike timing-dependent long-term depression at hippocampal CA3-CA1 synapses is evident until the third postnatal week in mice. The authors show that maturation beyond four weeks is associated with a switch to long-term potentiation in which astrocytes play a central role.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-18024-4