CAPICE: a computational method for Consequence-Agnostic Pathogenicity Interpretation of Clinical Exome variations

Exome sequencing is now mainstream in clinical practice. However, identification of pathogenic Mendelian variants remains time-consuming, in part, because the limited accuracy of current computational prediction methods requires manual classification by experts. Here we introduce CAPICE, a new machi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome medicine 2020-08, Vol.12 (1), p.1-75, Article 75
Hauptverfasser: Li, Shuang, van der Velde, K. Joeri, de Ridder, Dick, van Dijk, Aalt D. J, Soudis, Dimitrios, Zwerwer, Leslie R, Deelen, Patrick, Hendriksen, Dennis, Charbon, Bart, van Gijn, Marielle E, Abbott, Kristin, Sikkema-Raddatz, Birgit, van Diemen, Cleo C, Kerstjens-Frederikse, Wilhelmina S, Sinke, Richard J, Swertz, Morris A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exome sequencing is now mainstream in clinical practice. However, identification of pathogenic Mendelian variants remains time-consuming, in part, because the limited accuracy of current computational prediction methods requires manual classification by experts. Here we introduce CAPICE, a new machine-learning-based method for prioritizing pathogenic variants, including SNVs and short InDels. CAPICE outperforms the best general (CADD, GAVIN) and consequence-type-specific (REVEL, ClinPred) computational prediction methods, for both rare and ultra-rare variants. CAPICE is easily added to diagnostic pipelines as pre-computed score file or command-line software, or using online MOLGENIS web service with API. Download CAPICE for free and open-source (LGPLv3) at Keywords: Variant pathogenicity prediction, Machine learning, Exome sequencing, Molecular consequence, Allele frequency, Clinical genetics, Genome diagnostics
ISSN:1756-994X
1756-994X
DOI:10.1186/s13073-020-00775-w