A Fractional Complex Permittivity Model of Media with Dielectric Relaxation

In this work, we propose a fractional complex permittivity model of dielectric media with memory. Debye’s generalized equation, expressed in terms of the phenomenological coefficients, is replaced with the corresponding differential equation by applying Caputo’s fractional derivative. We observe how...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractal and fractional 2017-12, Vol.1 (1), p.4
Hauptverfasser: Ciancio, Armando, Flora, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we propose a fractional complex permittivity model of dielectric media with memory. Debye’s generalized equation, expressed in terms of the phenomenological coefficients, is replaced with the corresponding differential equation by applying Caputo’s fractional derivative. We observe how fractional order depends on the frequency band of excitation energy in accordance with the 2nd Principle of Thermodynamics. The model obtained is validated with respect to the measurements made on the biological tissues and in particular on the human aorta.
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract1010004