Organic molecule functionalized lead sulfide hybrid system for energy storage and field dependent polarization performances

A wet chemical route is reported for synthesising organic molecule stabilized lead sulfide nanoparticles. The dielectric capacitance, energy storage performances and field-driven polarization of the organic–inorganic hybrid system are investigated in the form of a device under varying temperature an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-11, Vol.12 (1), p.19280-19280, Article 19280
Hauptverfasser: Ghosh, Sarit K., Waziri, Ibrahim, Bo, Maolin, Singh, Harishchandra, Islam, Rafique Ul, Mallick, Kaushik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A wet chemical route is reported for synthesising organic molecule stabilized lead sulfide nanoparticles. The dielectric capacitance, energy storage performances and field-driven polarization of the organic–inorganic hybrid system are investigated in the form of a device under varying temperature and frequency conditions. The structural analysis confirmed the formation of the monoclinic phase of lead sulfide within the organic network. The band structure of lead sulfide was obtained by density functional theory calculation that supported the semiconductor nature of the material with a direct band gap of 2.27 eV. The dielectric performance of the lead sulfide originated due to the dipolar and the space charge polarization. The energy storage ability of the material was investigated under DC-bias conditions, and the device exhibited the power density values 30 W/g and 340 W/g at 100 Hz and 10 kHz, respectively. The electric field-induced polarization study exhibited a fatigue-free behaviour of the device for 10 3 cycles with a stable dielectric strength. The study revealed that the lead sulfide-based system has potential in energy storage applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-23909-z