Loss distribution analysis and accurate calculation method for bulk-power MMC

Accurate evaluation of power losses in a modular multilevel converter (MMC) is very important for circuit component selection, cooling system design, and reliability analysis of power transmission systems. However, the existing converter valve loss calculation methods using the nearest level modulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protection and control of modern power systems 2023-12, Vol.8 (1), p.56-15, Article 56
Hauptverfasser: Song, Yonghui, Luo, Yongjie, Xiong, Xiaofu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate evaluation of power losses in a modular multilevel converter (MMC) is very important for circuit component selection, cooling system design, and reliability analysis of power transmission systems. However, the existing converter valve loss calculation methods using the nearest level modulation (NLM) method and the traditional sorting-based capacitor voltage balancing strategy are inaccurate since the submodule (SM) switching logics in the MMC arms are uncertain. To solve this problem, the switching principle of the SMs in the sorting-based voltage balancing strategy is analyzed. An accurate MMC power loss calculation method based on the analysis of loss distribution of various SM topologies, including half-bridge submodule (HBSM), full-bridge submodule (FBSM) and clamp double submodule (CDSM), is proposed in this paper. The method can accurately calculate the losses caused by the extra switching actions during the capacitor voltage balancing process, thus greatly increasing the calculation accuracy of switching losses compared with existing methods. Simulation results based on a practical ± 350 kV/1000 MW MMC-HVDC system with variety of MMC topologies with different voltage balancing strategies demonstrate the effectiveness of the proposed method.
ISSN:2367-2617
2367-0983
DOI:10.1186/s41601-023-00313-x