Finding new physics without learning about it: anomaly detection as a tool for searches at colliders

In this paper we propose a new strategy, based on anomaly detection methods, to search for new physics phenomena at colliders independently of the details of such new events. For this purpose, machine learning techniques are trained using Standard Model events, with the corresponding outputs being s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2021, Vol.81 (1), p.1-14, Article 27
Hauptverfasser: Crispim Romão, M., Castro, N. F., Pedro, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we propose a new strategy, based on anomaly detection methods, to search for new physics phenomena at colliders independently of the details of such new events. For this purpose, machine learning techniques are trained using Standard Model events, with the corresponding outputs being sensitive to physics beyond it. We explore three novel AD methods in HEP: Isolation Forest, Histogram-Based Outlier Detection, and Deep Support Vector Data Description; alongside the most customary Autoencoder. In order to evaluate the sensitivity of the proposed approach, predictions from specific new physics models are considered and compared to those achieved when using fully supervised deep neural networks. A comparison between shallow and deep anomaly detection techniques is also presented. Our results demonstrate the potential of semi-supervised anomaly detection techniques to extensively explore the present and future hadron colliders’ data.
ISSN:1434-6044
1434-6052
DOI:10.1140/epjc/s10052-020-08807-w