Reductive inactivation of the hemiaminal pharmacophore for resistance against tetrahydroisoquinoline antibiotics

Antibiotic resistance is becoming one of the major crises, among which hydrolysis reaction is widely employed by bacteria to destroy the reactive pharmacophore. Correspondingly, antibiotic producer has canonically co-evolved this approach with the biosynthetic capability for self-resistance. Here we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-12, Vol.12 (1), p.7085-7085, Article 7085
Hauptverfasser: Wen, Wan-Hong, Zhang, Yue, Zhang, Ying-Ying, Yu, Qian, Jiang, Chu-Chu, Tang, Man-Cheng, Pu, Jin-Yue, Wu, Lian, Zhao, Yi-Lei, Shi, Ting, Zhou, Jiahai, Tang, Gong-Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antibiotic resistance is becoming one of the major crises, among which hydrolysis reaction is widely employed by bacteria to destroy the reactive pharmacophore. Correspondingly, antibiotic producer has canonically co-evolved this approach with the biosynthetic capability for self-resistance. Here we discover a self-defense strategy featuring with reductive inactivation of hemiaminal pharmacophore by short-chain dehydrogenases/reductases (SDRs) NapW and homW, which are integrated with the naphthyridinomycin biosynthetic pathway. We determine the crystal structure of NapW·NADPH complex and propose a catalytic mechanism by molecular dynamics simulation analysis. Additionally, a similar detoxification strategy is identified in the biosynthesis of saframycin A, another member of tetrahydroisoquinoline (THIQ) antibiotics. Remarkably, similar SDRs are widely spread in bacteria and able to inactive other THIQ members including the clinical anticancer drug, ET-743. These findings not only fill in the missing intracellular events of temporal-spatial shielding mode for cryptic self-resistance during THIQs biosynthesis, but also exhibit a sophisticated damage-control in secondary metabolism and general immunity toward this family of antibiotics. Antibiotic-producing organisms need to co-evolve self-protection mechanisms to avoid any damage to themselves caused by the antibiotic pharmacophore (the reactive part of the compound). In this study, the authors report a self-defense strategy in naphthyridinomycin (NDM)-producing Streptomyces lusitanus, that comprises reductive inactivation of the hemiaminal pharmacophore by short-chain dehydrogenases/reductases (SDRs) NapW and HomW.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-27404-3